The "Best" Random Wire Antenna Lengths
Randon wire lengths you should and should not use!

The random wire antenna is probably one of the least expensive, easiest and cheapest HF antennas to use if you have a tuner and you want to get the "most" out of a length of "random" wire without having to pull out that calculator, doing the math, getting the center insulator built or bought, running the feedline, and all the rest that goes with putting up a more elaborate antenna.
All you need for a random wire antenna is some wire, your tuner, one or more supports up as high as you can get them to string the wire from the supports to the tuner, at least one or two insulators and a little time.

One single wire, no solder connections, very simple.... all the way from the tuner to the end support. That's it in a nutshell.....or is it?

Many hams have tried till they are blue in the face to install the random wire antenna that works on most; if not all of the HF bands with terrible results. Swr usually is all over the place and the tuner will just not do it's job. You can get good loading and low swr on sometimes 2 or 3 bands, but one or more of the bands that you want, just will not cooperate with an swr that can be adjusted with the "tuner".

So after much frustration..down it comes and you go on to a totally different type of antenna....all that time just wasted in your opinion.....until now!

We recently found some good information about random wire lengths that you should and should not use.

Jack, VE3EED, hopefully has solved a major headache we all have when we attempt to go thru the trial and error and frustration with getting the random wire to work where WE want it to work.

He knew that in order for the tuner to "see" a fairly low swr to work within it's range, that the antenna had to be NOT A HALF WAVE ON ANY FREQUENCY that we wanted to us, because a half wave will give us a very high impedance and the resulting swr into a 50 ohm transmitter!

So Jack took most of one day, did the math with the aid of his trusty calculator, several cups of coffee and came up with........................
In Jack’s own words....
"Here's the word on random-wire antennae."

Presented for your consideration by Jack, VE3EED.

The table below represents half wave lengths and multiples that you DO NOT WANT TO USE!

You have to stay away from a half wavelength on any frequency. Therefore, we came up with the following numbers to avoid (IN FEET):

These lengths in the table below are the culprits that cause all of the trouble when using random lengths.

<table>
<thead>
<tr>
<th>Frequency MHz</th>
<th>1/2 Wave</th>
<th>2nd Multiple</th>
<th>3rd Multiple</th>
<th>4th Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9</td>
<td>246</td>
<td>492</td>
<td>738</td>
<td>984</td>
</tr>
<tr>
<td>3.8</td>
<td>123</td>
<td>246</td>
<td>369</td>
<td>492</td>
</tr>
<tr>
<td>7.2</td>
<td>65</td>
<td>130</td>
<td>195</td>
<td>260</td>
</tr>
<tr>
<td>10.1</td>
<td>46</td>
<td>92</td>
<td>138</td>
<td>184</td>
</tr>
<tr>
<td>14.2</td>
<td>33</td>
<td>66</td>
<td>99</td>
<td>132</td>
</tr>
<tr>
<td>18.1</td>
<td>26</td>
<td>52</td>
<td>78</td>
<td>104</td>
</tr>
<tr>
<td>21.3</td>
<td>22</td>
<td>44</td>
<td>66</td>
<td>88</td>
</tr>
<tr>
<td>24.9</td>
<td>19</td>
<td>38</td>
<td>57</td>
<td>76</td>
</tr>
<tr>
<td>28.5</td>
<td>16</td>
<td>32</td>
<td>48</td>
<td>64</td>
</tr>
</tbody>
</table>

So those are the numbers above that we have to stay as far away from as possible when building a long-wire antenna.

Here they are in order:

Some of these numbers are too close to squeeze in between them.
Here are the final numbers (in my opinion) in green below that would be good for a long-wire antenna: *(You may want to make a note of them)*

REVISED: 29 35.5 41 58 71 84 107 119 148 203 347 407 423

REVISION NOTE: We had a note from James, KB5YN, pointing out that one of my so-called GOOD numbers was 220 feet. That is the 10th multiple of a half wave on 15 meters. Well, I didn't think it would make any difference at that many multiples. However, the radio didn't tune up very well on 15 meters.

So, having nothing better to do one day, I re-did the calculations going out to 500 feet. That meant calculating all the way to 32 multiples of a half wave on 10 meters. I won't bore you with all that so the first portion of this still only shows up to the 4th multiple. There are so many new frequencies to stay away from, that it gets pretty tricky for the longer wires. However, the list has been revised and is good for wires as long as 500 feet.

73.... JACK, VE3EDD
(VISIT [HIS WEBSITE](#))

Editors note: Many thanks to Jack, VE3EDD for sharing his math skills with us. Hopefully these random wire length calculations will help us all make this "easy" antenna work better!

*(Also note that here may be instances where the suggested lengths may not work exactly due to the many variables in the surroundings of the antenna, your tuner, it's height above ground, it's construction, etc. Just add or subtract as needed a little at a time to get the best compromise. *(The numbers above are a great start, thanks to Jack!)*

(VISIT [HIS WEBSITE](#) AND SAY THANKS)

He just saved you and I loads of time and frustration.

N4UJW